
Constellation X-ray Mission

Mission Configuration

Gabe Karpati, Mission SE

gabriel.karpati@nasa.gov 301-286-4468

February 15, 2006 / GSFC

Outline

- Mission Configuration
 - Requirements
 - Launch / Orbit / Timeline
- Observatory Configuration
 - Subsystems Highlights
 - Resource Budgets

Introduction

Charge

Refine 10/4 Observatory design to a near Phase-A maturity

Con-X 10/4 Engineering Team (GSFC except where noted)

Systems: Gabe Karpati, Tom Buckler (Swales),

Jamie Britt, Mark Freeman (SAO)

Instrument Systems: Gary Sneiderman

Flight Dynamics: Michael Mesarch

ACS: Dave Olney

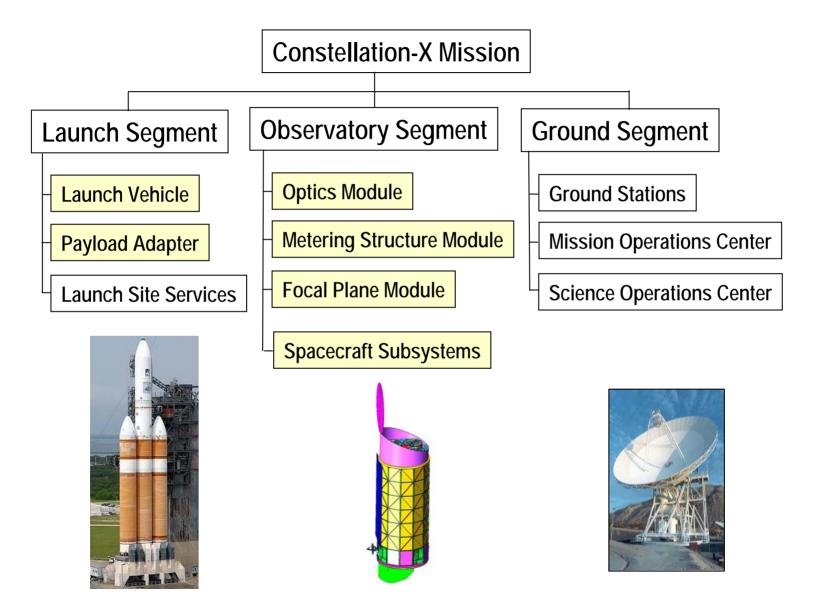
Mechanical: Jeff Stewart, Bobby Nanan

Propulsion: Rick Caverly (OSC), Morris Frayman (Swales)

Thermal: Miles Newman (Swales)

Power: Bob Beaman

RF Comm: Ron Vento


C&DH: Terry Smith

Flight SW: Carver Audain

Disposal: Scott Hull

Constellation-X Mission Elements

Performance Requirements

Sizing

- Mission Life 5 years, 10 years goal
- Size consumables for 10 years / 115 m/s total delta-v
- Size Structure and Propulsion Tanks for max liftoff mass, others for CBE
- No performance degradation w/ single point failure

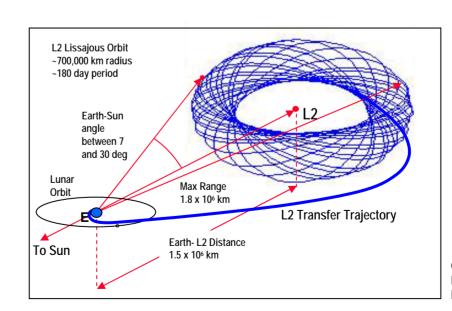
Environment

- Design for 50 kRad TID
- Micrometeoroid protection required

Timing accuracy

- ±100 µsec to UTC

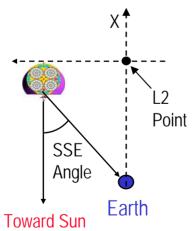
Launch


- Launch Vehicle: Delta IV- Heavy
 - 2-stage, all liquid, relatively low dispersions
 - Most capable US LV, throw mass: 9380 kg to L2 (C3 = -0.5)
 - Fairing internal diameter: 4.5 m
- 4394-5 Payload Adapter ("Elephant Stand") - -

- Allows for no CG height limitation
- 386 kg PAF weight factored in published throw mass

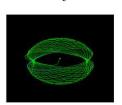
Direct insertion to L2

- Several launch opportunities available almost every day of the year
 - Except 3-4 days when Moon is "in the way"
- Launch energy: -0.5 km2/s2
- No lunar phasing loops



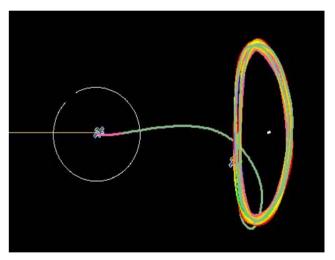
Courtesy Mark Beckman, Mike Menzel - JWST

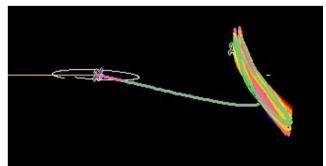
Orbit


- 100 days cruise to L2
 - Outgassing, then checkout during entire cruise
- Orbit: L2; Large Lissajous orbit (~700,000 km)
 - Smallest orbit with zero m/s insertion delta-v
 - Orbit mostly inside Earth's Magnetosheath
 - No Earth shadows during length of mission at L2, potential of lunar penumbra < 14% obscuration
 - L2-Earth-SC Angle varies from 7° to 30° over 10 years

30 min / day undisturbed ranging required for 21 days before every stationkeeping burn

halo


Lissajous



torus

Orbit varies between these above as a function of launch time, even within the same day!

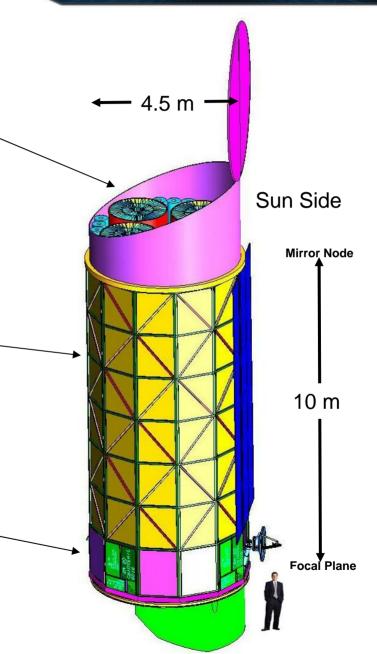
Courtesy Mark Beckman, JWST

Nominal Mission Timeline

- Launch (L)
 - Instruments and Cryo completely deenergized, S/C mostly unpowered
 - LV First stage is ballistic (falls into ocean)
- Transfer Trajectory Insertion (TTI): L + 25 to 120 minutes
 - Need live RF Comm w/ ground
- LV Separation: TTI + 5 minutes
 - LV 2nd stage remains on trajectory to near-L2 cruise, behind ConX
 - Turn S/C on, acquire nominal attitude, begin S/C Checkout; Some Instruments on, Cryo off
- ELV Dispersion Corrections: TTI + 12 to 24 hours
- First and Second Mid-Course Correction: TTI + 15 days, + 60 days
- Open telescope covers, outgas Observatory
- Conduct checkouts and calibrations throughout cruise
- L2 Orbit Insertion (L2 OI): ~ TTI + 100 days
- Science Ops start at L+100 days
 - L2 Stationkeeping burns: Every 21 90 days
 - L2 Momentum Unloading Burns: Every 1-3 days w/ thrusters in pure couple for forceless torque
- EOM Disposal: L + 10 years ++
 - Delta-v << 1 m/s to driftaway trajectory, then passivate Observatory

Observatory Configuration

Optics Module (OM)

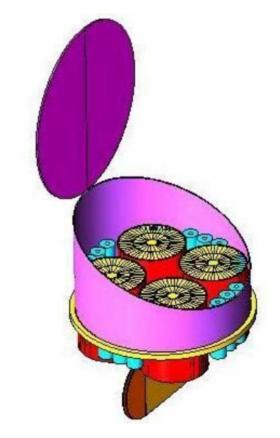

- SXT and HXT mirror assemblies
- FMA Thermal System and control electronics
- Door/sunshade and internal cover/door
- Star Tracker

Metering Structure Module (MSM)

- Fixed metering structure
- Light and Micrometeoroid shield
- Internal Baffles
- Solar Arrays

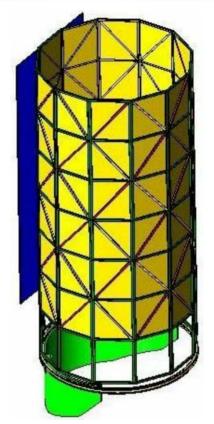
Focal Plane Module (FPM) and S/C Bus

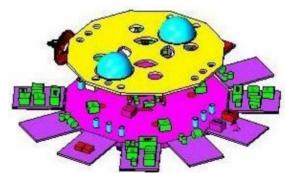
- All instrument detector systems on aft-most deck, baffles
- Propulsion Tanks
- Electronics for instruments on panels and Benches
- Spacecraft bus subsystem components on panels and deck



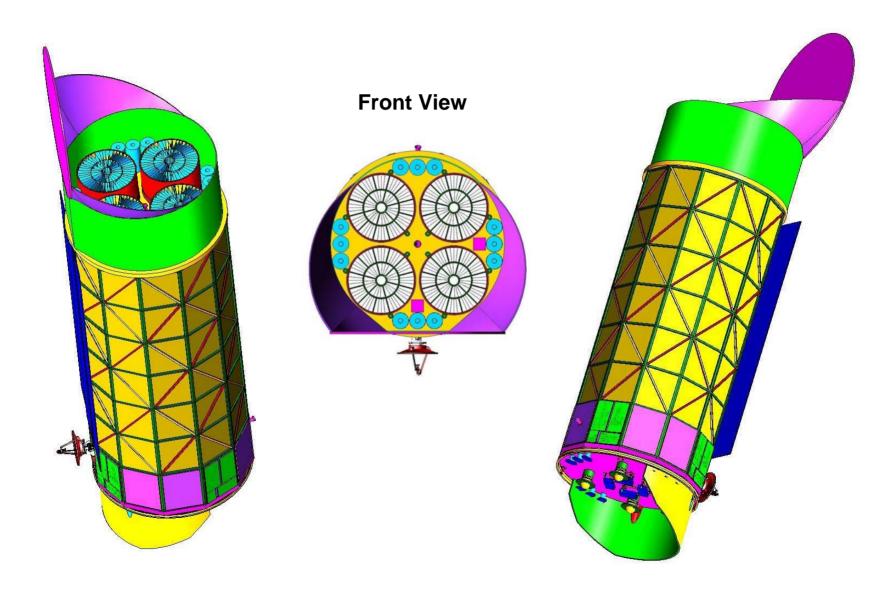
Con-X Modules Definition

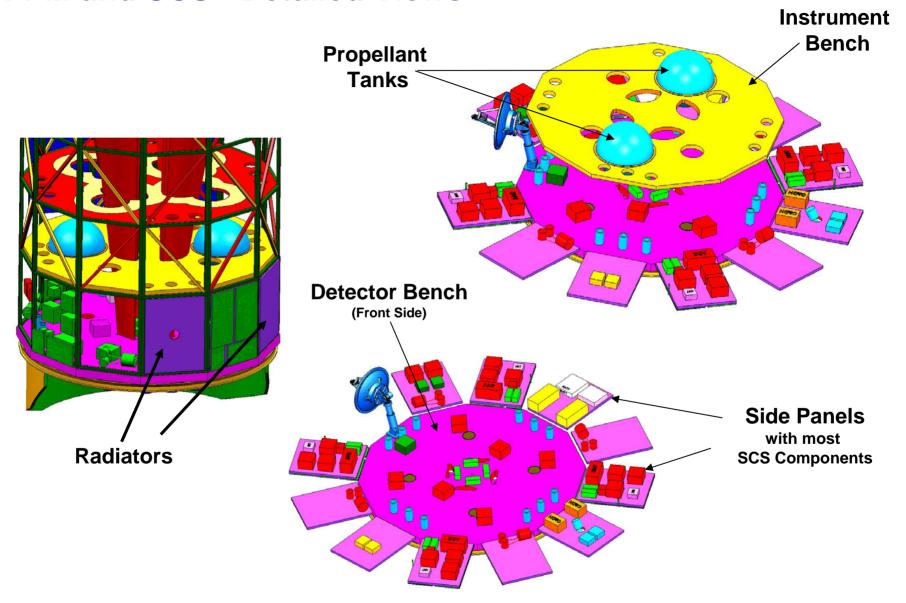
Observatory


Observatory = Optics Module (OM) + Metering Structure Module (MSM) + Focal Plane Module (FPM) + Spacecraft Subsystems (SCS)


- The Optics Module (OM) comprises:
 - 4 SXT Flight Mirror Assemblies (FMAs)
 - SXT Mirrors
 - Complete set of RGAs
 - Pre and Post-Collimators with thermal control hardware
 - FMA Structure
 - 12 HXT Mirrors
 - Fore and Aft Telescope Doors
 - Star Tracker

Con-X Modules Definition, cont'd


- The Metering Structure Module (MSM) comprises:
 - Structure
 - 1 mm thick composite Thermal/Light /Micrometeorite Shroud, also acting as shear panels
 - Solar Array Assembly
 - Two partially Tantalum shielded Internal Baffles
- The Focal Plane Module (FPM) comprises:
 - Instrument Bench including:
 - Some Instrument Electronics Boxes
 - Propellant Tanks
 - Detector Bench, including:
 - 4 XMS Detectors with Cryo-coolers, associated Focus Mechanisms and Aft Radiators
 - 12 HXT Detectors
 - 4 RGSs (including RFCs and ZOC's (TBD))
 - Some Front End Instrument Electronics Boxes
 - Aft Sunshield
- Spacecraft Subsystems (SCS):
 - Most s/c components are mounted on FPM panels and benches
 - Numerous parts require off-FPM placement, such as Star Trackers, Thrusters, etc.



Observatory - Front and Aft Views

FPM and SCS - Detailed Views

ACS

- Pointing knowledge: ~3 arcsec (3σ), pointing control: ~30 arcsec (3σ)
- Slew: 2 degrees per minute
- Five Reaction Wheels, Honeywell HR 150: 203 Nms, 1.62 Nm
- 2 ea. 3 arcsec (3σ) Star Trackers (CT 602) slightly canted, Sun Sensors, 10 year IRUs
- ACE and S/W embedded in C&DH
- Momentum unload every day w/ pure couple thrusters w/ minimum trajectory disturbance

Mechanical

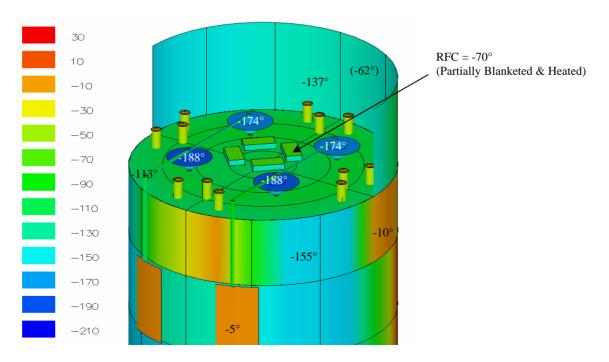
12 sided composite Structure with AI honeycomb decks and side equipment panels
 Deployables:

- Solar Array Panels (some body-mounted, some deployed with two hinge-lines)
- 2 axis actuated High Gain Antenna, 1 m dia. On 1.5 m long boom
- Telescope Fore Cover, and Telescope Aft Contamination Cover
- Detector Contamination Covers (TBD)
- FPM Sunshade (TBD)

Propulsion

- Hydrazine bipropellant (N2O4/N2H4) to minimize propellant and prevent hydrocarbon contaminates
- Two modified RCA S5000 propellant tanks,
 21", sized for 10 years / max mass, one
 pressurant tank from PSI Inc.
- Propellant load of 345.5 kg sized for a 7000 kg S/C dry mass
- 12 (TBD) ea. AMPAC (N2O4/N2H4) 5 lbf (Pt/Rh) thrusters

Power


- 4900 W total Observatory load
- Bus is battery dominated
- MAP like PSE
- ~36 m2 S/A on seven panels (four deployed)
- 3 ea. 40 Ah Lithium Ion Battery, < 50% DoD

Delta-V budget

Launch Window	10 m/s
ELV Dispersion Correction	40 m/s
Mid-Course Corrections (2)	10 m/s
L2 Stationkeeping (10 yrs)	40 m/s
Margin (15%)	15 m/s
Total	115 m/s

Thermal

- All requirements met (per ~100 node thermal model analysis)
- FMA: Electrically heated Pre- and Post-Collimators maintain mirrors at 20°C at all times
- MSM: Conventional design w/ radiators; circumferential gradient 8 °C
- FPM: Embedded heat pipes to lower gradients
- Cryocoolers: Sunshade and passive radiators maintain < 150 °K
- Cold Head: Heat pipes carry heat load to radiators

RF Comm

- Ka band 1 m dia. 2 axis actuated High Gain Antenna, 40 Mbps telemetry to DSN 34 m antenna
- S band Omni antennas, 2 kbps command/telemetry and ranging to DSN 34 m antenna
- 15 min data-contact every other day, 30 min ranging every day (or possibly 1 hr every other day)
- > 3dB link margin (where required)

C&DH

- Two separate (redundant) C&DH units
- RAD 750 Single Board Computer w/ PowerPC 603/750 microprocessor
- Science payload connections: RS-422
- Instrument Suite Total data rate 192 kbps avg. / 2560 kbps peak
- One 40-Gbit embedded bulk memory card per side
- Oven controlled Ultra Stable Oscillator, accurate to 1.59 microsec/hour = 38 microsec/day

Mass Budget

Mass Growth Margin relative to Current Best Estimate (CBE): 29%

	CBE	Alloc.
Optics	2870	3595
SXT/FMA	2303	2801
FMA Structure	1152	1498
RGA	360	504
HXT Optics	207	290
Instruments	928	1296
XMS	588	823
RFC	132	182
НХТ	208	291
Observatory Subsystems	2950	3760
ACS	164	180
Structure	1682	2170
Mechanisms	322	404
Propulsion	54	70
Thermal	309	402
Power	165	204
Harness	189	246
Communications	46	57
C&DH	21	27
Sep. System and Misc	200	260
OBS. DRY MASS	6949	8911
Propellant	346	451
OBS. WET MASS	7294	9362
LV Throw Mass	9380	9380
Margin	2086	

Overall Systems Assessment

- The 10/4 configuration meets requirements
 - All s/c bus and subsystems requirements well understood, and met w/ baseline design
- The 10/4 configuration is conventional*
 - Most s/c components are "off the shelf"
 - Conventional Ground Segment (DSN)
 - Conventional Mission Operations
 - The 10/4 Observatory employs no new technologies*

Everything accounted for

- All components identified, placed on the 10/4 Observatory, and accounted for in the design, mass, and power budgets
- Observatory composite mass margin is 29%
 - Right at the ceiling of the "OK" range
 - In the process of scrubbing some heavy subsystems; need better definition for more accurate mass estimate

^{*} Aapart from technologies associated with the Flight Mirror Assembly and the Instruments